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1. Introduction: 

 
In phase-contrast light and electron microscopy, one exploits the wave properties of 

photons and electrons respectively.  The principles of imaging with waves are the 

realm of “Fourier Optics”.  As a very first experiment (“Gedankenexperiment”), let 

us think back to days when we – as children – would focus the (parallel) light waves 

of the (far away) sun on a piece of paper in order to set it alight.  What lesson did we 

learn from these early scientific experiments (Fig. 1)? 

 

 
 
Figure 1:  Plane parallel waves are focussed into a single point in the back focal plane 

of a positive lens (focal distance “F”). The plane waves are one wavelength (“λ”) apart. 

 

In Figure 1, the plane waves illuminate an object that is merely a flat sheet of glass 

and thus the waves exiting the object on right are plane waves indistinguishable from 

the incident waves.  These plane waves are converted into convergent waves which 

reach a focus in the back focal plane of the lens.  This optical system is thus capable 
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of converting a “constant” plane wave in the front focal plane into a single point in 

the back focal plane of the lens. 

 

 
 
Figure 2: A single point scatterer in the object leads to secondary (“scattered”) 

concentric waves emerging from that point in the object.  Since the object is placed in 

the front focal plane of this lens system, these scattered or “diffracted” secondary 

waves become plane waves in the back focal plane of the system. 

 

 

In Fig. 1, the object is a transparent glass plate that essentially does not interact with 

the incident waves at all. In Fig. 2, a single secondary scatterer is included on the 

optical axis of the system. The secondary scatterer will become a source radiating 

concentric waves. Since this point scatterer is in the front focal plane of the lens, 

parallel waves will emerge from the back of the lens due to the presence of this point 

scatterer.   

 

These two simple experiments illustrate how a point source in the front focal plane 

of a simple lens system leads to a plane wave in the back focal plane and vice versa, 

in the sense that plane waves emerging from the front focal plane, will focus into a 

single spot in the back focal plane of the system.  This special reciprocity 

relationship between the front – and the back focal plane of a simple lens, is a 

“Fourier Transform” relationship that will be elaborated on in this document. The 

Fourier Transform is as fundamental in electron and light microscopy as it is in X-

ray crystallography.  It is so fundamental in Optics, that all what is discussed in this 

document falls under the science of “Fourier Optics”. 

 

This document provides an overview of the most relevant physical concepts in 

imaging in the light microscope and the transmission electron microscope.  In 

particular, emphasis is placed on the basic concepts of phase contrast microscopy. 

Without seriously going into mathematical details, the Phase Contrast Transfer 
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Function (“PhCTF”, or short “CTF”) is discussed.  These concepts are of primary 

importance for optimising an electron microscope for the imaging of biological 

macromolecules.  

 

 

 

2. Scattering and Diffraction by a periodic object 

 
One of the very fundamental processes in imaging procedures is the interaction 

between the illuminating waves and the object. It is only after such interaction takes 

place that the radiation emerging from the object carries – possibly encoded – 

information about the object.  It is the information about the object that we are after 

we will see that retrieving that information requires a good understanding of the 

basic physical principles of how the information is coded into the radiation and how 

to optimise our instrumentation in order to register the information. 

 

 
 

Figure 3: A regular array of single point scatterers in the object plane leads to 

secondary waves that reinforce each other in specific directions.  Drawn in this 

diagram is the “+1” diffracted beam in which the concentric waves stemming from 

neighbouring point scatterers in the array are lagging by exactly one wavelength.  

 

Let us, instead of the single point scatterer of Fig. 2, place an array of equidistant 

point scatterers in the object plane, with each point scatterer placed at a distance “d” 

from its nearest neighbour (Fig. 3). When this array is illuminated from the left with 

plane waves (wavelength “”), each of the point scatterers in the object will start 

emitting secondary radiation in concentric circles, as drawn in the illustration. In 

specific directions, the wave fronts from neighbouring point scatterers will be in 

synch with each others and will constructively interfere. In other directions, the 

waves emerging from different scatterers arrive at different times (with different 

“phases”) and the radiation in these directions will disappear due to destructive 
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interference.  A direction in which there will be constructive interferences in 

illustrated in Fig. 3 and this “diffraction” direction is given by the formula: 

 

 

sin(α)  = λ / d      (1) 

 

Note that the smaller “d” is (the distance between the scattering spots in the 

denominator), that is, the smaller the period of the regular array of point scatterer, 

(“grating”), the higher the angle the diffracted wave makes with the optical axis of 

the system. Whereas, close to the object, the various diffracted beams are all 

intermixed (such as the +1, -1, and the 0 order beam, Fig. 4), at a sufficiently large 

distance from the object, all the different diffraction directions separate and we can 

observe its diffraction pattern. 

 

 
 

Figure 4: A regular array of single point scatterers in the object plane leads to 

secondary waves that reinforce each other in specific directions.  Drawn in this 

diagram are the “+1” , the corresponding “-1” and the “0” order diffracted beams.  

Close behind the object all these waves are intermingled, but they separate with the 

increasing distance from the object.  Eventually, a diffraction pattern of the object is 

obtained. 

 

Thus, if we look in a plane that is placed far enough away from the grating, we will 

see two spots (at least) due to the light being diffracted by each periodic grating, in 

full analogy to the diffraction of X-ray waves by a 3D protein crystal.  Every “spatial 

frequency” (= periodic) component in the object thus corresponds to a certain 

radiation (diffraction) direction.  If we replace the grating by a finer grating, the light 

will be diffracted at a higher angle. If we have objects containing more than a single 

spatial frequency, we can obtain highly complicated diffraction patterns.  In 

particular, periodic objects such as 2D or 3D crystals lead to diffraction patterns that 

consist of intricate rasters of diffraction peaks. Special slides with periodic patterns, 

can also lead to spectacular diffraction patterns when illuminated by a laser.  Such 
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diffraction by a periodic object is well known from X-ray crystallography. Indeed, 

the formula for constructive interference (1) is essentially identical to Bragg’s Law 

in X-ray crystallography (Sir William Henry Bragg, and his son Sir William 

Lawrence Bragg, shared the 1915 Physics Nobel prize, http://www.nobel.se/). 

 

3. Imaging Diffraction patterns by a simple lens 
 

The diffraction experiments described in the previous paragraphs rely on a 

sufficiently large (“infinite”) distance behind the object for separation for separating 

the various plane waves exiting the object in different directions.  Since it may be 

difficult to look at a plane that is placed very far away from the object (at infinity: 

the “Fraunhofer” diffraction plane) we can use the trick explained in the Introduction 

(Fig. 1) to bring “infinity” within reach.  The trick is to place a lens behind the object 

and to look at the diffraction plane in the back focal plane of the lens (Fig. 5).   

 

 
 

Figure 5: A periodic in the object plane leads to secondary waves that reinforce each 

other in specific directions.  Drawn in this diagram are the “+1” and the corresponding 

“-1” order diffracted beams.  (If the object is a pure sine wave, these are the only 

diffraction spots apart from the zero order beam; if the object consists of a regular 

array of point scatterers, higher order diffraction peaks may appear). Close behind the 

object all these waves are intermingled, but they separate with the increasing distance 

from the object.  A lens placed at distance “F” from the object will focus plane waves 

in different points in the back focal plane, depending on the angle  that the directions 

of the plane waves make with respect to the optical axis. 

 

In the set up of Fig. 5, every direction is focused in a point in the back focal plane of 

the lens. In other words, each spatial frequency in the object corresponds to a point 

in the back focal plane.  Actually, each spatial frequency corresponds to two points 

in the back focal plane because there will be two diffraction maxima in the set up of 

Fig. 5 (like there were two maxima in Fig. 4). The simple lens system decomposes 

the wave front exiting the object in its sine/cosine-wave components and actually 

http://www.nobel.se/
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performs an exact “Fourier Transform” of the wave front. This Fourier Transform 

property of a simple lens system is presented here mainly in the context of 

explaining the principles of image formation; this property is actually exploited 

routinely in electron microscopy to judge the quality of electron micrographs.  

Electron micrographs are routinely placed in the “optical diffractometer” (Figure 6) 

 

 
 

Figure 6: Use of the optical diffractometer (OD) to assess the quality of an electron 

micrograph. The micrograph (a negative) is placed in front of the diffraction lens and 

its diffraction pattern is observed in the back focal plane. The further out the 

diffraction pattern extends, the higher the level of resolution in the micrograph. This 

sample consists of small gold crystals on a carbon support film; its diffractogram 

indicates the presence of 2.3Å information.  Some anorganic samples can tolerate high 

electron exposures. The image was obtained using a total exposure dose of 

~10000el./Å2, an at least 1000-fold higher exposure level than would be tolerable for 

imaging a (cooled) biological sample.  

 

 

4. Imaging systems and their Transfer Functions 
 

In X-ray crystallography, one collects data in the diffraction plane, that is, in Fourier 

space. In microscopy, in contrast, the data is collected in the image plane, that is, 

real space. Irrespective of the actual implementation of the microscopical 

instrument, its imaging properties can be described formally using a double Fourier 

Transform device as depicted in Fig. 7.  The system drawn here is a 1:1 

magnification imaging system.  In fact, by changing the ratio of the focal length’s of 

the two Fourier transform lenses (F’/F) the same formalism can be used to describe 

the imaging properties of instruments ranging from microscopes (F’/F >> 1), 

photographic cameras (F’/F ≈  1), to astronomical telescopes (F’/F << 1). 

 



 7 

 

 
Figure 7. Imaging devices perform a “double” Fourier transform.  This leaves 

space for manipulation of the data in Fourier space by modifications of the 

diffracted waves in the back-focal plane.  

 

The great advantage of describing imaging systems by this formalism is that all of 

the properties of the instrument can be dealt using a relatively straightforward 

mathematical formalism. All of the properties of the imaging system can be 

described by a simple multiplication of the “signal” in the back focal plane of the 

imaging device, by a “transfer function” characterising the instrument.  The signal at 

the output side of the microscope can then be calculated by Fourier transforming the 

product back into real space.  The formalism of using “Transfer Functions” in 

Fourier space to describe the effects of a component of an information chain is a 

standard formalism in Signal Processing that can be applied to all “Linear Systems”.  

The formalism is used in imaging but also for describing, say, the characteristics of a 

loudspeaker system in an audio amplification chain.   

 

As an example of how this works, let us look at the resolution limits achievable by a 

conventional light microscope. In Fig 5,7-8, a limiting aperture is included in the 

back focal plane of the first lens.  This aperture in a light-microscope objective lens 

may be a real aperture, but it may also be defined by the diameter of the front lens 

facing the object.  In the Electron Microscope (EM) it normally is a physical 

aperture inserted into the electron beam in a aperture holder. For completeness, in 

the astronomical telescope it is given by the diameter of the telescope lens.  We seen 

above that the smaller the periodicity of the object “d”, the higher the angle  the 

diffracted beam makes with the optical axis (the direction of the incoming waves). 
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5. Resolution limits of the (light) microscope 

 

 
Figure 8. The limiting aperture (with diameter “D”) in the back focal plane of the 

imaging instrument prevents the very fine detail image information to reach the image 

(overall set-up: Fig. 7) and it thus limits the resolution achievable by the imaging 

system.  

 

In Fig. 8, a limiting aperture is included in the back focal plane of the first lens.  The 

wave falling onto the aperture is the Fourier Transform of the wave emerging from 

the object. It is subsequently “masked” by the opaque aperture that removes all 

information for which f >> D/2.  Note from Fig. 8, that f ≈ F sin ().   We have seen 

previously that the general diffraction direction , is related to the distance d by 

formula (1).  To find the highest resolution possible with this imaging system, we 

simply need to look at what the maximum max angle would be that is not yet 

blocked by the aperture.  The smallest periodic detail dmin that can still be 

transmitted by this optical system is: 
 

dmin   = λ / sin (max)    (2) 

 

This formula is generally known as the “Raleigh” resolution criterion in a slightly 

different form: 

 

dmin   = 0.61 λ / n sin (max) = = 0.61 λ / NA   (3) 

 

“NA” stands for the Numerical Aperture of the lens (defined as n sin (max)). The 

“n” in this formula stands for the refractive index of the medium; for example, in 

oil-immersion microscopy one can reach a higher resolution than in air. The factor 

0.61 in (3) stems from the definition of the Raleigh resolution criterion which was 

derived for just two point scatterers rather than a periodic array of point scatterers, 

and for a different type of illumination than used here (Lord John William Strutt 

Raleigh: 1842-1919; Nobel Laureate 1904: http://www.nobel.se/). Note that this 

criterion is (again) closely related to Bragg’s law.  

 

http://www.nobel.se/
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Too high spatial frequencies (f > D/2) are stopped by the aperture and will thus no 

longer contribute to the image.  The “transfer function” for intensity information 

(ITF: Intensity Transfer Function) will thus be: 

Figure 9. The transfer function of the imaging system of Fig. 7-8, assuming coherent 

illumination.   (The dashed line indicates a transfer function that could be obtained by 

using partially coherent illumination.) 

 

There can be variants of this ITF depending on the type of illumination.  We have 

hitherto been discussing (coherent) parallel plane wave illumination of the sample. 

For incoherent or partially coherent illumination (van Heel, 1978), the high-

frequency cut-off of this ITF at D/2 is not sharp but only gradually drops to zero 

(dashed line). Before we go more into details on how different types of objects – in 

particular phase objects – are imaged in the in the microscope, we need some further 

understanding of what the objects do to the incident plane waves. 

 

Note that in electron microscopy the wavelength of the electron radiation can be 

calculated from the approximate formula:     (150/V) in which V is the 

(relativistically corrected) acceleration voltage. Thus, for 300kV electrons we have a 

wavelength of: ~0.022 Å. 

 

6. Interaction between the incident waves and the specimen 

 
To be able to image an object, we must first have to illuminate the object.  We may 

see the illumination we apply to the object as a vector (Fig. 11a).  The length of the 

vector gives the amplitude of the incoming wave; its direction represents the phase 

of the incoming wave. The phase of the incoming wave changes continuously and 

very rapidly with time, but this is not the phase we want to focus on. We are only 

interested in changes in the phase of the incoming wave due to the interactions with 

the object ("scattered wave") RELATIVE to the phase of the unscattered wave.  (The 

rapid changes in the phase of the unscattered wave with time will also be present in 

the scattered wave and these will thus cancel as soon as we look at their phase 

difference.)  We thus define the phase of the illumination vector in Fig. 11a to be 

zero and pointing to the right. The object can influence the incoming wave in two 

essentially different ways: it can absorb part of the waves or it can change its phase. 

  

The amplitude object may absorb a part of the incoming radiation. The outgoing 

wave will then have a smaller amplitude than the incoming wave (Fig. 10a, 11b).  

This type of object is called an "amplitude" or "intensity" object.  The absorption in 

the object is different from place to place and we can describe the amplitude object 
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by its amplitude wave-function A (r), where r describes the position in the object 

plane. A slide normal in a slide projector is a typical object in this category. 

 
Figure 10.  An amplitude object (a) will absorb some of the incoming wave and will 

thus transmit only part of the radiation. A phase object (b) has a varying thickness 

which changes the phase of the incident waves without affecting their intensity.  

Combinations of both (c) are also possible.   

 
A phase object does not absorb radiation, but rather delays or advances the 

incoming wave, leading to an object wave that locally has a phase different from 

than in the rest of the object plane (Fig. 10b, 11c).  We can also see such a phase 

object as a "glass plate" that locally has a different thickness than it has in the rest of 

the object plane. It need not really be physically thicker: a locally different refractive 

index has the same effect as a local thickness variation.  Note that the full wave goes 

through the object and - as a whole - suffers phase retardation due to the average 

optical thickness of the object.  This global phase delay is, again, not interesting 

since it affects all parts of the object plane.  After passage through the object, we can 

define the average of the object wave to be zero.  The phase object locally rotates the 

wave-vector over an angle Ph (r) relative to the average phase.  For small phase 

shifts, this angle equals the distance Ph (r) as is drawn in Fig. 11c.  
       

 
     _       _  
 1   1 - A (r) A (r)    Ph

(r) 
 
 

 a    b    c 

      
Figure 11. Interactions of the incident beam with different types of specimens. A) The 

incident plane waves are described by a unit vector of length “1”. B) An amplitude 

object will absorb some of the incoming energy and will thus transmit only part of the 

radiation. C) In contrast, a phase object is fully transparent and does not absorb any 

energy.  A phase object has a varying thickness which locally changes (rotates) the 

relative phase of the incident wave. 
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To describe the imaging of amplitude and phase objects in the microscope, or to 

explain the “phase problem” (see below), we need the mathematics of complex 

numbers (See: Appendix 1).  The incident wave we have called “1”, above (Fig. 

11a).  The (complex) wave just behind the object can be described by (“1” times) the 

object wave function: 

  

O(r)  = A (r) . e  
{ -i . Ph (r)}

    (4) 

 

In this equation, A (r) describes the amplitude variations in the object (as function 

of position “r” in the object) and Ph (r) describes the phase variations in the object. 

This formalism is thus suited to describe all three different types of objects depicted 

in Fig. 10. In the “ideal” microscope, the wave function in image plane would be 

identical (apart from the magnification) to the modulated wave just behind the 

object. When we record the image, we record the intensities in the image, that is, the 

square of the wave functions (see Appendix 1, and below): 

  

I(r)   = O(r)2  = 2
A (r)     (5) 

 

Thus, although the amplitude information is recorded in the image intensity in the 

ideal microscope, the phase information is not. Our main objects in electron 

microscopy – and certainly all cryo-EM specimens – are phase objects (Fig. 10a).  

Thus, the image we register will not show anything of the phases Ph (r) we are 

most interested in, but rather just a homogeneous grey image. 

 

 

7. The Phase problem in X-ray vs. EM 
 

Both in X-ray crystallography and in Electron Microscopy we face a “phase 

problem”.  Although the “phase problem” means different things in X-ray 

crystallography and in Electron Microscopy, both are based on the fact that when 

recording a diffraction pattern or and image, we only register the square of the 

complex wave rather than the wave itself. As we just have seen in formula (5), the 

phase of the complex wave disappears when the intensities (square of the 

Amplitude) are registered.  

 

The phase problem in X-ray crystallography occurs when registering the diffraction 

pattern (Fourier space).  The phases of the diffraction pattern peaks (relative to the 

phase of the zero-order beam) contain the most important information in terms of 

the structure of the molecules in the unit cell of the crystals.  Much of the effort in 

X-ray crystallography goes into finding the phases of the diffraction spots. 

 

In Electron Microscopy, we register the square of the complex wave in the image 

plane. Again, the phases of that wave are lost in the process. However, in phase 

contrast microscopy – and electron microscopy is a form of phase contrast 

microscopy – one optimises the instrument to convert the phase variations in the 

object plane into amplitude variations in the image plane (see below).  Thus, 

file:///C:/context/teach/M3D/2009_M3D/Complex_Numbers.doc
file:///C:/context/teach/M3D/2009_M3D/Complex_Numbers.doc
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although strictly speaking the phases in the image are lost, the amplitudes in the 

image which one registers contain the information about the phases in the object, 

which is exactly what we are interest in when studying the structure of biological 

macromolecules by cryo-EM.  Thus, there is not really a phase problem in EM. 

 

But, even if it is not directly relevant in electron microscopy, why is it that we loose 

the phases of the wave functions (both in EM and in X-ray crystallography) when 

we register the wave functions in the first place? What is the fundament problem we 

face here?  The problem is associated with the time scale of the events.  Suppose on 

stand in the water at the beach and observes the ocean waves going to the shore.  

The distance between the tops of two consecutive waves defines the wavelength to 

the waves, the height of the waves defines their amplitudes, and we can even 

observe the phase of the arriving waves.  After all, we can synchronise our actions to 

the phase of the arriving waves and jump over the wave tops assuming their 

amplitudes will allow us to do that.  Thus, we can easily measure the amplitudes of 

the incoming waves as well as their phases.  Why does that not also work for 

electron and photons? 

 

Suppose we expose a photographic film to light using a very short exposure time, 

say 1/1000th of a second. During that exposure the light waves will have travelled ~ 

300,000,000 m/sec x 0.001 sec = 300,000 m.  Thus, the equivalent of ~ 1010 

wavelengths has passed through the film during the exposure time. The story for X-

ray photons or 300kV electrons is similar.  Although determining the phases of 

ocean waves or radio waves is quite straightforward, the detectors we use in electron 

microscopy and in X-ray crystallography are simply too slow for determining the 

phases of the incoming waves directly.  There is also not much hope of developing 

phase-sensitive detectors since there are limitations to what one can do with all 

known materials.  The phase sensitive detectors can be built if we create a reference 

wave with which we can generate an interference pattern with the wave we are 

interested in. This is the principle of Holography, invented by the Imperial College 

scientist Dennis Gabor (Nobel prize for Physics 1971; http://www.nobel.se/). 

 

 

7. The Phase Contrast Microscope 

 
As was mentioned above (equation 5), in an ideal microscope, a pure phase object 

will lead to homogeneously grey image from which all phase information has 

disappeared. This means that when we are, say, investigating live bacteria in water, 

nothing is seen in the image. It had long since been common knowledge that one 

could observe such objects by somewhat defocusing the light microscope and we 

will get to that below (Zernike, 1942).  However, it required a stroke of genius to 

fundamentally understand the matter and to then design the phase contrast 

microscope exploiting this basic understanding. Fritz Zernike (1888-1966) invented 

the phase-contrast microscope in 1930 at the University of Groningen, The 

Netherlands. The first phase-contrast microscopes were not built until 1941. He 

received the Nobel Prize for physics 1956 (http://www.nobel.se/).  To avoid losing 

the phase information he proposed the use of a “phase plate” in the back focal plane 

of the microscope.  

http://www.nobel.se/
http://www.nobel.se/
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Figure 11. Fritz Zernike (1888-1966) with one of first phase-contrast microscopes were 

not built until 1941. (Nobel Prize for physics, 1956 (http://www.nobel.se/). 

 

The phase plate (Fig. 12) changes the relative length of the optical path of the 

diffracted beams with respect to the zero-order beam (such that an extra phase 

difference of 90º (or 270º) is introduced between the two (Fig. 13).  The influence of 

this extra phase shift in the resulting image is dramatic.  We discussed above (Fig. 

11) why phase objects are not visible in the conventional microscope: the phase 

fluctuations in the image (due to the presence of the phase object in the object plane) 

are “perpendicular” to the plane waves of the undiffracted beam (Fig. 11c). 

 

 
Figure 12.  A phase object does not modulate the intensity of the incoming wave, but 

rather changes the phase of the incident waves. The brilliant trick of phase-contrast 

http://www.nobel.se/
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microscopy is to manipulate the phases of the diffracted beam, relative to the phase of 

the 0-order beam (on the optical axis in this example). 

The phase plate will change the world around: that phase information that originally 

led to fluctuations perpendicular to the background, now leads to fluctuation along 

the background light vector. At the same time, the amplitude information 

fluctuations that was along the direction of the background light (Fig. 11b) now 

becomes perpendicular to the background vector and is thus invisible in the image. 

Figure 13.  The Zernike phase plate in the back focal plane of the objective lens 

manipulates the phases of the diffracted beams with respect to the zero order beam 

such that they will interfere constructively in the image plane.  The phase rotation (a) 

can be either ~90º or ~270º.  The difference between the resulting images (90º versus 

270º), is a complete reversal in contrast.  

 

In terms of the transfer of the phase information through the microscope we must 

realise that the Phase Contrast Transfer Function (PhCTF) is somewhat different 

from the transfer function we discussed earlier (Fig. 9).  The phase contrast 

microscope translates phase fluctuation in the object into amplitude modulations in 

the image. The PhCTF (short: CTF) illustrates who well the instrument does this.  

Since PhCTF thus compares different entities is its sometimes called a “pseudo” 

transfer function. 

 

 

8.  The Aberrated Microscope 
 

A simple experiment:  If we frame a piece of polyethylene foil in a slide holder, we 

do not see anything if the slide projector is focused.  However, if we turn the lens out 

of focus, thickness variations in the foil due to its manufacturing process will 

become visible.  The aberrated microscope can thus transfer phase information and 

that effect has puzzled many microscopists already more than a century ago. The 

modus operandi of the "defocused" microscope is pictured in Fig. 14. 
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Figure 14. A simple defocusing of a light microscope may help visualising phase 

differences in the object.  The departure of the diffracted wave from the ideal 

focal plane can be interpreted as a phase plate and will lead to visualising 

certain spatial frequencies in the object. 

 

We had already seen that a point in the object plane corresponds to a plane wave in 

the back focal plane (Fig. 14a). If we shift the point to the right towards the lens – 

the under-focus situation – the wave-front becomes divergent (Fig. 14b). If we shift 

that point slightly to the left (over focus direction) the wave in the back focal plane 

becomes convergent (Fig. 14c).  In the under-focus case (Fig. 14b; Fig. 15), the 

wave in the back-focal plane will lag in phase relative to the wave on the optical 

axis. This is explained in more detail in the legend of Fig. 15. Interestingly, we could 

have obtained the same situation by inserting a physical phase plate in the back focal 

plane that would cause this phase shift.  This is why the phase structure of the plastic 

sheet becomes visible upon defocusing or why we can see phase information in the 

normal (but defocused) light microscope.  Although we normally don't think of 

defocusing as being an image aberration, we can generally consider lens aberrations 

to work like a phase plate in the back focal plane of an optical system.  

 

The PhCF for this situation will schematically behave as shown in Fig. 16.  Since the 

PhCF in the defocused microscope is no longer zero everywhere, phase information 

becomes visible. 

 

 
 

Figure 15. Defocus operating as a phase plate. 
At position A, in the back focal plane the phase is 

delayed by 90° with respect to the phase at the 

optical axis: that leads to the imaging of this 

particular spatial frequency component with ideal 

(positive) phase contrast.  A bit further up (B) the 

total phase delay is 180°, leading to no imaging of 

that spatial frequency.  At position C, the total 

phase difference is 270° and we obtain ideal, 

negative phase contrast etc. 
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9. The Electron Microscope as a Phase Contrast Microscope 

 
The electron microscope has an aberration that cannot easily be corrected: the 

spherical aberration. The spherical aberration coefficient “Cs” is measured in mm 

(see below).  The additional phase shifts in the back focal plane due to spherical 

aberration are schematically drawn in Fig. 17. 

 

 
 

For the higher spatial frequencies, the phase shifts grow rapidly, namely with the 

fourth power of the distance from the axis.  The nice thing about spherical aberration 

in the EM is that it can, in combination with a certain amount of "underfocus" (Fig. 

15) leads to a combined phase shift in the back focal plane that is exactly  /4 over a 

large range of spatial frequencies (Fig. 18).  Given the right combination of 

underfocus and spherical aberration we obtain an almost ideal phase contrast 

microscope for the frequency range from around 20Å down to around 4Å ("Scherzer 

focus"). The PhCF for this situation is pictured schematically in (Fig. 19).  

 

 

Figure 16. The associated PhCTF. 

 
The information transfer in the defocused 

microscope is expressed by a Phase Contrast 

Transfer Function which is the sine of the wave 

aberration function shown in Figure 15. It has 

its positive maximum (at “A”)  where the phase 

shift reaches 90º (λ/4) and its negative 

maximum where the phase shift is 270º (3/4 λ). 
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Figure 18 (top) Figure 19 (Bottom) 

 

 

The phase shift in the back focal plane due to spherical aberration and defocusing 

together, are given in (Scherzer 1949): 

                (f)  =   2   { -Cs  4· f 4   +   f    2· f 2   }   (6) 

                                       4        2 

 

The PhCTF is then obtained by calculating the SINE of the wave aberration 

function: 

        PhCTF (f)  = SIN { 2     (-Cs  4· f 4  +   f    2· f 2  )}  (7) 

                                             4        2 

 

In this formula, the variables are: 

Cs: the spherical aberration coefficient (measured in mm.) 

f   : defocus  (positive for underfocus)  (-40000Å to + 40000Å) 

f      : spatial frequency  

     : wavelength of the electrons (at 80kV : 0.043 Å) 



 18 

References: 
 

1. E. Abbe, “Beiträge zur Theorie des Mikroskops und der 

mikroskopischen Wahrnehmung”, Archiv f. Mikroskopischer Anatomie 

Bd. 9 (1873) 413-480. 

 

It is amazing how much someone as brilliant as Abbe can say in 

words without resorting to the use of even a single formula. 

 

2. F. Zernike, “Phase contrast, a new method for the microscopic 

observation of transparent objects, Part I”, Physica 9 (1942) 686-693. 

 

This paper starts with: “Every microscopist knows that transparent 

objects show light or dark contours in different ways varying with the 

change of focus and depending on the kind of illumination used. 

Curiously enough, the wave theory of light has never been explicitly 

applied to the case of absolutely transparent objects, the details of 

which differ only in thickness or refractive index.“  

 

3.  F. Zernike, “Phase contrast, a new method for the microscopic 

observation of transparent objects, Part II”, Physica 9 (1942) 974-986. 

 

4. P.M. Duffieux, L' Intégrale de Fourier et ses Aplications à l'Optique, 

Facultée des Sciences Besançon (1946). 

 

5. O. Scherzer, J. Appl. Phys. 20 (1949) 20-29. 

 

6.  M. Born and E. Wolf, “Principles of Optics”, Pergamon Press (1975). 

 

The “bible” of optics exclusively oriented towards theoreticians. 

 

7. R.N. Bracewell, “The Fourier Integral and its Applications”, McGraw-

Hill (1965). 

 

8. D.C. Champeney, “Fourier Transforms and their Physical Applications”, 

Academic Press (1973) 

 

9. J.W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill (1968). 

 

Oriented towards theoreticians/ physicists. Still one of the standard books 

in the field. No mention of electron microscopy at all. 

 

10. M. van Heel, "On the imaging of relatively strong objects in partially 

coherent illumination in optics and electron optics", Optik 47 (1978) 389-

408. 

 

11. M. van Heel, “The Phase Contrast Transfer Function is - per definition - 

zero at the origin.”: in preparation. 



 19 

Appendix 1:  Complex Numbers 
 

Complex numbers, rather than representing a point along a line as do “Real” 

numbers, represent a point in a two-dimensional plane.  A point in a plane can be 

described by its X- and Y-coordinates; in complex numbers nomenclature, these are 

called the “Real” and “Imaginary” part. Alternatively, the complex number can be 

described by its “Amplitude” and “Phase”. 

 

A 

C B 

R 

 
 

 
 

In Real and Imaginary representation: 

 

C = A + i . B   (1) 
 

In Amplitude and Phase representation:     

 

C = R . e i.    (2) 

   

In the amplitude and phase notation, one uses polar co-ordinates rather than 

Cartesian (x-y) co-ordinates.  In polar co-ordinates, one describes the position of a 

point in a plane by its distance to the origin (the radius or the amplitude), and by the 

angle that the line connecting the origin to the point makes with the positive X-axis.  

By definition: 

e i. = Cos () + i . Sin ()  (3) 

 

Thus, putting (1), (2) and (3) together we have: 

 

A = R . Cos ()   (4) 

And: 

    B = R . Sin ()   (5) 

 

These two formulas allow one to convert a complex number written in amplitude 

and phase notation to a complex number written in real and imaginary part notation.   

 

The square of a complex number “C” (the “Intensity”) is defined as: 

 

C2 = C . C* = ( A + i.B) . (A + i.B)*  =   

 

(A + i.B) . (A - i.B) =  A2 + B2   (6) 
 

(C* is the complex conjugate of C).  Alternatively, in the amplitude and phase 

representation: 
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C2 = C . C* =  R . e i. . R . e -i. = R2  (7) 

 

Note that in the squaring operation one uses a special version of the multiplication 

operation, the “conjugate multiplication”.  In the conjugate multiplication, one uses 

the conjugate of the second factor for the multiplication (replace “i” by “-i”).  After 

the squaring operation, the amplitude “R” can be retrieved, not the phase  of the 

complex number. 

 

 

 

Appendix 2: The Fourier Transform  
 

The Fourier Transform, invented (discovered?) by Jean-Baptiste Fourier (1768-

1830), plays a central role in signal and image processing.  In order to convey some 

sense for the behaviour of this important mathematical transform, here are some 

sketched examples first: 

 

 

 

Figure 1 

     

In the top row of Fig. 3, a number of functions (F(x)) are drawn, while the lower row 

shows the corresponding Fourier Transforms (F(f)).  In Fig. 3a a constant signal 

leads to a very strong peak (a “delta function”) at frequency zero in the Fourier 

transform.  This is not too surprising since the signal F(x) contains exclusively a 

very low frequency (namely, the frequency zero). 

 

In going from 3a to 3d, the signal F(x) becomes narrower and higher, until the signal 

itself becomes a delta function (3d).  At the same time we see that the corresponding 

Fourier transforms broaden: in 3d the transform has become a constant.  This 

reciprocal behaviour of a function and its Fourier transform is a very characteristic 

property of the FT: short distances in real space correspond to large distances in 

Fourier space and vice-versa. (Keyword: “reciprocity theorem”) 
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As was mentioned above, the FT decomposes a signal into sine and cosine waves. If 

the signal consists of a single cosine wave, the FT of that signal thus takes a simple 

form (we will also soon understand why these transform pairs provide nice links to 

the field of optics and X-ray crystallography): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

The cosine waves presented in Fig. 4a,b are essentially identical, but the one in Fig 

4a (top row) has a zero average, whereas the one in Fig. 4b is always positive. We 

can think of the latter one as being the sum of the first and a constant.  From Fig. 3a, 

we have seen that the FT of a constant is a large peak at the origin.  Thus, the FT of 

the function in Fig. 4b is simply the FT of Fig.4a, plus a large peak at the origin. The 

peak at the origin is called the zero-order or the unscattered beam in X-ray and 

Electron crystallography. 

 

Just to test your understanding of the reciprocity principle of the FT: what happens 

with the transforms, if we change the period of the sine-shaped waves in F(x)? That 

is to say, what happens if we change the period p to 2p or to p/2? 

 

There are a number of definitions of the Fourier transform currently in use. The 

definition I prefer, since it avoids the presence of "2" factors in transform pairs, is:  

 

                            +                           

            F(f)     =      F(x)  exp( -2i  f · x) dx              (1)   

     - 

 

With its inverse: 
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      + 

F(x)     =      F(f) exp( +2i  f · x) df  (2) 

   - 

 

We are not doing anything with these Fourier integrals here: the definitions are only 

given to facilitate their recognition in the literature.  The link to Optics was first 

made by Duffieux in 1946 in his historical work: "l'Intégrale de Fourier et ses 

applications a l'Optique" (which, I must admit, I've never read).  In Fourier Optics, 

the Fourier transforms are typically used in their two-dimensional form:  

 

      + 

         F (f,g)  =     F(x,y)  exp{ -2i (f · x + g · y) } dx dy  (3) 

 - 

 

 

With its inverse: 

 

      + 

         F (x,y) =     F(f,g)  exp{ +2i (f · x + g · y) } df dg   (4) 

 - 

 

In X-ray crystallography, the Fourier Transform is also use intensively, but there it is 

normally used in its three-dimensional form. 
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Appendix 3:  Contrast Transfer Function (coherent illumination) 

 
There are different ways of describing the interaction between of the electron waves 

when it passes through the (largely) transparent object in the electron microscope. 

Let us assume the object changes the phase of the incident wave in a position (r) 

dependent way as described by the phase delay function  r , and that it removes 

some of the intensity (square of the amplitudes) from the beam as described by the 

amplitude transmittance function  rA . For the object wave,  rW , behind a general 

object we may then write: 

 

          rTirTrirArW imagreal  exp
  

(1a).

  

The  rTreal  and  rTimag  notation introduced here is an alternative “Real” and 

“Imaginary” formulation of the complex transmittance function of the sample (see 

appendix 1). For the object wave  rW  behind a weak-phase object (weak phase 

approximation, meaning that  r  is much smaller than “1”), we may write, using 

only the first elements of the series development of the exponent: 

 

        ririrArW   1.exp
   

(1b).

  

The amplitude transmittance function is a constant for a pure phase object and we 

thus replace  rA  by “1”.  The object wave  rW  leads to a wave  fW  in the back 

focal plane of the microscope (which is in "diffraction space" or "Fourier space"): 

 

              fifriFTrirAFTfW   1.exp  

          (2). 
 
In which  f is the Dirac delta function (a very high yet very narrow peak) 
describing the zero-order diffraction beam in back focal plane of the microscope. 
The function  f  is the Fourier Transform (FT) of the object’s phase delay 
function  r . The wave function  fW ' , after passing the back focal plane, is 
described by the multiplication of the object wave in Fourier space with the phase 
changes imposed by the wave aberration function  f : 

 

      fWfifW  exp'  

 

          fWfSinifWfCosfW  '
         (3a) 

 

           ffSinffCosiffW  '       (3b) 

 

Or, equivalently, in image space (where the point-spread functions, “PSF”, are the 

Fourier transforms of the corresponding transfer functions; the  symbol denotes a 

convolution): 
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        rWrPSFirPSFrW  sincos'                        (4a) 

 

          rrPSFrrPSFirW   sincos1'    (4b) 

 

The term that will survive the squaring of the wave in the image plane, upon 

registering a micrograph, is the “Sin” term: 

 

     rWrWrI '*'   

 

         rWrPSFirPSFrI sincos  
 

      rWrPSFirPSF *

sincos 
 

 

           rrPSFrrPSFirI  sincos1  

 

        rrPSFrrPSFi   sincos1
 

 

   rrPSF  sin21        (5) 

 

In terms of the Fourier Transform of the image we obtain: 

 

          ffSinfrIFTfI     (6) 

 

The wave aberration function due to spherical aberration and defocusing is given by 

(Scherzer 1949):  
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The PhCTF is obtained as the sine of the wave aberration function  f : 
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(8) 

With:   Cs : the spherical aberration coefficient (measured in mm.) 

 : defocus (positive for underfocus)  (-40000Å to + 40000Å) 

f : spatial frequency  

 : wavelength of the electrons (at 80kV : 0.043 Å) 


