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1. Introduction: 

 
In phase-contrast light and electron microscopy, one exploits the wave properties of 

photons and electrons respectively.  The principles of imaging with waves are the 

realm of “Fourier Optics”.  As a very first experiment (“Gedankenexperiment”), let us 

think back to days when we – as children – would focus the (parallel) light waves of 

the (far away) sun on a piece of paper in order to set it alight.  What lesson did we 

learn from these early scientific experiments (Fig. 1)? 

 

 
 
Figure 1:  Plane parallel waves are focussed into a single point in the back focal plane of 

a positive lens (focal distance “F”). The plane waves are one wavelength (“λ”) apart. 

 

In Figure 1, the plane waves illuminate an object that is merely a flat sheet of glass 

and thus the waves exiting the object on right are plane waves indistinguishable from 

the incident waves.  These plane waves are converted into convergent waves which 

reach a focus in the back focal plane of the lens.  This optical system is thus capable 

of converting a “constant” plane wave in the front focal plane into a single point in the 

back focal plane of the lens. 

 

mailto:marin.vanheel@gmail.com
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Figure 2: A single point scatterer in the object leads to secondary (“scattered”) 

concentric waves emerging from that point in the object.  Since the object is placed in 

the front focal plane of this lens system, these scattered or “diffracted” secondary waves 

become plane waves in the back focal plane of the system. 

 

In Fig. 1, the object is a transparent glass plate that essentially does not interact with 

the incident waves at all. In Fig. 2, a single secondary scatterer is included on the 

optical axis of the system. The secondary scatterer will become a source radiating 

concentric waves. Since this point scatterer is in the front focal plane of the lens, 

parallel waves will emerge from the back of the lens due to the presence of this point 

scatterer.   

 

These two simple experiments illustrate how a point source in the front focal plane of 

a simple lens system leads to a plane wave in the back focal plane and vice versa, in 

the sense that plane waves emerging from the front focal plane, will focus into a single 

spot in the back focal plane of the system.  This special reciprocity relationship 

between the front – and the back focal plane of a simple lens, is a “Fourier Transform” 

relationship that will be elaborated on in this document. The Fourier Transform is as 

fundamental in electron and light microscopy as it is in X-ray crystallography.  It is 

so fundamental in Optics, that all what is discussed in this document falls under the 

science of “Fourier Optics”. 

 

This document provides an overview of the most relevant physical concepts in 

imaging in the light microscope and the transmission electron microscope.  In 

particular, emphasis is placed on the basic concepts of phase contrast microscopy. 

Without seriously going into mathematical details, the Phase Contrast Transfer 

Function (“PhCTF”, or short “CTF”) is discussed.  These concepts are of primary 

importance for optimising an electron microscope for the imaging of biological 

macromolecules.  
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2. Scattering and Diffraction by a periodic object 

 
One of the very fundamental processes in imaging procedures is the interaction 

between the illuminating waves and the object. It is only after such interaction takes 

place that the radiation emerging from the object carries – possibly encoded – 

information about the object.  It is the information about the object that we are after 

we will see that retrieving that information requires a good understanding of the basic 

physical principles of how the information is coded into the radiation and how to 

optimise our instrumentation in order to register the information. 

 

 
 

Figure 3: A regular array of single point scatterers in the object plane leads to secondary 

waves that reinforce each other in specific directions.  Drawn in this diagram is the “+1” 

diffracted beam in which the concentric waves stemming from neighbouring point 

scatterers in the array are lagging by exactly one wavelength.  

 

Let us, instead of the single point scatterer of Fig. 2, place an array of equidistant point 

scatterers in the object plane, with each point scatterer placed at a distance “d” from 

its nearest neighbour (Fig. 3). When this array is illuminated from the left with plane 

waves (wavelength “”), each of the point scatterers in the object will start emitting 

secondary radiation in concentric circles, as drawn in the illustration. In specific 

directions, the wave fronts from neighbouring point scatterers will be in synch with 

each others and will constructively interfere. In other directions, the waves emerging 

from different scatterers arrive at different times (with different “phases”) and the 

radiation in these directions will disappear due to destructive interference.  A direction 

in which there will be constructive interferences in illustrated in Fig. 3 and this 

“diffraction” direction is given by the formula: 

 

sin(α) = λ / d      (1) 
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Note that the smaller “d” is (the distance between the scattering spots in the 

denominator), that is, the smaller the period of the regular array of point scatterer, 

(“grating”), the higher the angle the diffracted wave makes with the optical axis of the 

system. Whereas, close to the object, the various diffracted beams are all intermixed 

(such as the +1, -1, and the 0 order beam, Fig. 4), at a sufficiently large distance from 

the object, all the different diffraction directions separate and we can observe its 

diffraction pattern. 

 

 
 

Figure 4: A regular array of single point scatterers in the object plane leads to secondary 

waves that reinforce each other in specific directions.  Drawn in this diagram are the 

“+1” , the corresponding “-1” and the “0” order diffracted beams.  Close behind the 

object all these waves are intermingled, but they separate with the increasing distance 

from the object.  Eventually, a diffraction pattern of the object is obtained. 

 

Thus, if we look in a plane, that is placed far enough away from the grating, we will 

see two spots (at least) due to the light being diffracted by each periodic grating, in 

full analogy to the diffraction of X-ray waves by a 3D protein crystal.  Every “spatial 

frequency” (= periodic) component in the object thus corresponds to a certain radiation 

(diffraction) direction.  If we replace the grating by a finer grating, the light will be 

diffracted at a higher angle. If we have objects containing more than a single spatial 

frequency, we can obtain highly complicated diffraction patterns.  In particular, 

periodic objects such as 2D or 3D crystals lead to diffraction patterns that consist of 

an intricate raster of diffraction peaks. Special slides with periodic patterns, can also 

lead to spectacular diffraction patterns when illuminated by a laser.  Such diffraction 

by a periodic object is well known from X-ray crystallography. Indeed, the formula 

for constructive interference (1) is essentially identical to Bragg’s Law in X-ray 

crystallography (Sir William Henry Bragg, and his son Sir William Lawrence Bragg, 

shared the 1915 Physics Nobel prize, http://www.nobel.se/). 

 

 

http://www.nobel.se/
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3. Imaging Diffraction patterns by a simple lens 
 

The diffraction experiments described in the previous paragraphs rely on a sufficiently 

large (“infinite”) distance behind the object for separation for separating the various 

plane waves exiting the object in different directions.  Since it may be difficult to look 

at a plane that is placed very far away from the object (at infinity: the “Fraunhofer” 

diffraction plane) we can use the trick explained in the Introduction (Fig. 1) to bring 

“infinity” within reach.  The trick is to place a lens behind the object and to look at 

the diffraction plane in the back focal plane of the lens (Fig. 5).   

 

 
 

Figure 5: A periodic in the object plane leads to secondary waves that reinforce each 

other in specific directions.  Drawn in this diagram are the “+1” and the corresponding 

“-1” order diffracted beams.  (If the object is a pure sine wave, these are the only 

diffraction spots apart from the zero order beam; if the object consists of a regular array 

of point scatterers, higher order diffraction peaks may appear). Close behind the object 

all these waves are intermingled, but they separate with the increasing distance from the 

object.  A lens placed at distance “F” from the object will focus plane waves in different 

points in the back focal plane, depending on the angle  that the directions of the plane 

waves make with respect to the optical axis. 

 

In the setup of Fig. 5, every direction is focused in a point in the back focal plane of 

the lens. In other words, each spatial frequency in the object corresponds to a point in 

the back focal plane.  Actually, each spatial frequency corresponds to two points in 

the back focal plane because there will be two diffraction maxima in the set up of Fig. 

5 (like there were two maxima in Fig. 4). The simple lens system decomposes the 

wave front exiting the object in its sine/cosine-wave components and actually 

performs an exact “Fourier Transform” of the wave front. This Fourier Transform 

property of a simple lens system is presented here mainly in the context of explaining 

the principles of image formation; this property is actually exploited routinely in 

electron microscopy to judge the quality of electron micrographs.  Electron 

micrographs are routinely placed in the “optical diffractometer” (Figure 6). 
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Figure 6: Use of the optical diffractometer (OD) to assess the quality of an electron 

micrograph. The micrograph (a negative) is placed in front of the diffraction lens and 

its diffraction pattern is observed in the back focal plane of the lens. The further out the 

diffraction pattern extends, the higher the level of resolution in the micrograph. This 

sample consists of small gold crystals on a carbon support film; its diffractogram 

indicates the presence of 2.3Å information.  Inorganic samples can often tolerate high 

electron exposures: this image was obtained using a dose of ~10000el./Å2. Biological 

samples, in contrast, may already show significant damage at exposure levels of ~10el./Å2 

even when cooled to liquid Nitrogen temperatures. Analogue optical diffractometers are 

no longer in use, now that the data collection is almost always performed digitally and 

now that digital Fourier Transforms can be performed in real time given the speed of  

modern computing equipment.  

 

4. Imaging systems and their Transfer Functions 
 

In X-ray crystallography, one collects data in the diffraction plane, that is, in Fourier 

space. In microscopy, in contrast, the data is collected in the image plane, that is, in 

real space. Irrespective of the actual implementation of the microscopical instrument, 

its imaging properties can be described formally using a double Fourier Transform 

device as depicted in Fig. 7.  The system drawn here is a 1:1 magnification imaging 

system.  In fact, by changing the ratio of the focal lengths of the two Fourier transform 

lenses (F’/F) the same formalism can be used to describe the imaging properties of 

instruments ranging from microscopes (F’/F >> 1), photographic cameras (F’/F ≈  1), 

to astronomical telescopes (F’/F << 1). 
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Figure 7. Imaging devices perform a “double” Fourier transform.  This leaves 

space for manipulation of the data in Fourier space by modifications of the 

diffracted waves in the back-focal plane.  

 

The great advantage of describing imaging systems by this formalism is that all of the 

properties of the “linear” imaging instrument can be dealt using a straightforward 

mathematical formalism. All of the properties of the imaging system can be described 

by a simple multiplication of the Fourier transform of the signal, in the back focal 

plane of the imaging device, by a “transfer function” characterising the instrument.  

The signal on the output side of the microscope can then be calculated by Fourier 

transforming that product back into real space.  The formalism of using “Transfer 

Functions” in Fourier space to describe the effects of a component of an information 

chain is a standard formalism in Signal Processing that can be applied to all “Linear 

Systems”. The formalism is used in 2D or 3D imaging but also for describing, say, the 

characteristics of a (1D) loudspeaker system in an audio amplification chain.   

 

As an example of how this works, let us look at the resolution limits achievable by a 

conventional light microscope. In Fig 5,7-8, a limiting aperture is included in the back 

focal plane of the first lens.  This aperture in a light-microscope objective lens may be 

a real aperture, but it may also be defined by the diameter of the front lens facing the 

object.  In the Electron Microscope (EM) it normally is a physical aperture inserted 

into the electron beam in a aperture holder. For completeness, in the astronomical 

telescope it is given by the diameter of the telescope lens.  We have seen above that 

the smaller the periodicity of the object “d”, the higher the angle  the diffracted beam 

makes with the optical axis (the direction of the incoming waves). 

 

5. Resolution limits of the (light) microscope 

 
In Fig. 8, a limiting aperture is included in the back focal plane of the first lens.  The 

wave falling onto the aperture is the Fourier Transform of the wave emerging from 

the object. It is subsequently “masked” by the opaque aperture that removes all 

information for which f >> D/2.  Note from Fig. 8, that f ≈ F sin ().   We have seen 

previously that the general diffraction direction , is related to the distance d by 

formula (1).  To find the highest resolution possible with this imaging system, we 

simply need to look at what the maximum max angle would be that is not yet blocked 

by the aperture.  The smallest periodic detail dmin that can still be transmitted by this 

optical system is: 
dmin   = λ / sin (max)    (2) 
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Figure 8. The limiting aperture (with diameter “D”) in the back focal plane of the 

imaging instrument prevents the very fine detail image information to reach the image 

(overall set-up: Fig. 7) and it thus limits the resolution achievable by the imaging system.  

 

This formula is generally known as the “Raleigh” resolution criterion in a slightly 

different form: 

dmin   = 0.61 λ / n sin (max) = = 0.61 λ / NA   (3) 

 

“NA” stands for the Numerical Aperture of the lens (defined as n sin (max)). The “n” 

in this formula stands for the refractive index of the medium; for example, in oil-

immersion microscopy one can reach a higher resolution than in air. The factor 0.61 

in (3) stems from the definition of the Raleigh resolution criterion which was derived 

for just two point scatterers rather than a periodic array of point scatterers, and for a 

different type of illumination than used here (Lord John William Strutt Raleigh: 1842-

1919; Nobel Laureate 1904: http://www.nobel.se/). Note that this criterion is (again) 

closely related to Bragg’s law.  

 

Too high spatial frequencies (f > D/2) are blocked by the aperture and will thus no 

longer contribute to the image.  The “transfer function” for intensity information (ITF: 

Intensity Transfer Function) will thus be: 

Figure 9. The transfer function of the imaging system of Fig. 7-8, assuming coherent 

illumination.   (The dashed line indicates a transfer function that could be obtained by 

using partially coherent illumination.) 

 

There can be variants of this ITF depending on the type of illumination.  We have 

hitherto been discussing (coherent) parallel plane wave illumination of the sample. 

For incoherent or partially coherent illumination [Van Heel, 1978], the high-frequency 

cut-off of this ITF at D/2 is not sharp but only gradually drops to zero (dashed line). 

Before we go more into details on how different types of objects – in particular phase 

http://www.nobel.se/
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objects – are imaged in the in the microscope, we need some further understanding of 

what the objects do to the incident plane waves. 

 

Note that in electron microscopy the wavelength of the electron radiation can be 

calculated from the approximate formula:     (150/V) in which V is the acceleration 

voltage (relativistically corrected). Thus, for 300kV electrons we have a wavelength 

of: ~0.022 Å. 

 

6. Interaction between the incident waves and the specimen 

 
To be able to image an object, we must first have to illuminate the object.  We may 

see the illumination we apply to the object as a vector (Fig. 11a).  The length of the 

vector gives the amplitude of the incoming wave; its direction represents the phase of 

the incoming wave. The phase of the incoming wave changes continuously and very 

rapidly with time, but this is not the phase we want to focus on. We are only interested 

in changes in the phase of the incoming wave due to the interactions with the object 

("scattered wave") relative to the phase of the unscattered wave.  (The rapid changes 

in the phase of the unscattered wave with time will also be present in the scattered 

wave and these will thus cancel as soon as we look at their phase difference.)  We thus 

define the phase of the illumination vector in Fig. 11a to be zero and pointing to the 

right. The object can influence the incoming wave in two essentially different ways: 

it can absorb part of the waves or it can change its phase. 

  

The amplitude object may absorb a part of the incoming radiation. The outgoing wave 

will have a smaller amplitude than the incoming wave (Fig. 10a, 11b).  This type of 

object is called an "amplitude" or "intensity" object.  The absorption in the object is 

different from place to place and we can describe the amplitude object by its amplitude 

function A (r), where r describes the position in the object plane.  

 

 
 

Figure 10.  An amplitude object (a) will absorb some of the incoming wave and will thus 

transmit only part of the radiation. A phase object (b) has a varying thickness which 

changes the phase of the incident waves without affecting their intensity.  Combinations 

of both (c) are also possible.   
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A phase object does not absorb radiation, but rather delays or advances the incoming 

wave, leading to an object wave that locally has a phase different from than in the rest 

of the object plane (Fig. 10b, 11c).  We can also see such a phase object as a "glass 

plate" that locally has a different thickness than it has in the rest of the object plane. It 

need not really be physically thicker: a locally different refractive index has the same 

effect as a local thickness variation.  Note that the full wave goes through the object 

and - as a whole - suffers phase retardation due to the average optical thickness of the 

object.  This global phase delay is, again, not interesting since it affects all parts of the 

object plane.  After passage through the object, we can define the average of the object 

wave to be zero.  The phase object locally rotates the wave-vector over an angle Ph 

(r) relative to the average phase.  For small phase shifts, this angle equals the distance 

Ph (r) as is drawn in Fig. 11c.  
       

     _       _  
 1   1 - A (r) A (r)    Ph

(r) 
 
 

 a    b    c 

      
Figure 11. Interactions of the incident beam with different types of specimens. A) The 

incident plane waves are described by a unit vector of length “1”. B) An amplitude object 

will absorb some of the incoming energy and will thus transmit only part of the radiation. 

C) In contrast, a phase object is fully transparent and does not absorb any energy.  A 

phase object has a varying thickness which locally changes (rotates) the relative phase 

of the incident wave. 

 

To describe the imaging of amplitude and phase objects in the microscope, or to 

explain the “phase problem” (see below), we need the mathematics of complex 

numbers (See: Appendix 1).  The incident wave we have called “1”, above (Fig. 11a).  

The (complex) wave just behind the object can be described by (“1” times) the object 

wave function:  

O(r)  = A (r) . e  
{ -i . Ph (r)}

    (4) 

 

In this equation, A (r) describes the amplitude variations in the object (as function of 

position “r” in the object) and Ph (r) describes the phase variations in the object. This 

formalism is thus suited to describe all three different types of objects depicted in Fig. 

10. In the “ideal” microscope, the wave function in image plane would be identical 

(apart from the magnification) to the modulated wave just behind the object. When 

we record the image, we record the intensities in the image, that is, the square of the 

wave functions (see Appendix 1, and below): 

  

I(r)  = O(r)2  = 2
A (r)      (5) 

 

Thus, although the amplitude information is recorded in the image intensity in the 

ideal microscope, the phase information is not. Our main objects in electron 

microscopy – and certainly all cryo-EM specimens – are phase objects (Fig. 10a).  

Thus, the image we register will not show anything of the phases Ph (r) we are most 

interested in, but rather just a homogeneous grey image. 

file:///C:/context/teach/M3D/2009_M3D/Complex_Numbers.doc
file:///C:/context/teach/M3D/2009_M3D/Complex_Numbers.doc
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7. The Phase problem in X-ray vs. EM 
 

Both in X-ray crystallography and in Electron Microscopy we face a “phase problem”.  

Although the “phase problem” means different things in X-ray crystallography and in 

Electron Microscopy, both are based on the fact that when recording a diffraction 

pattern or and image, we only register the square of the complex wave rather than the 

wave itself. As we just have seen in formula (5), the phase of the complex wave 

disappears when the intensities (square of the Amplitude) are registered.  

 

The phase problem in X-ray crystallography occurs when registering the diffraction 

pattern (Fourier space).  The phases of the diffraction pattern peaks (relative to the 

phase of the zero-order beam) contain the most important information in terms of the 

structure of the molecules in the unit cell of the crystals.  Much of the effort in X-ray 

crystallography goes into finding the phases of the diffraction spots. 

 

In Electron Microscopy, we register the square of the complex wave in the image 

plane. Again, the phases of that wave are lost in the process. However, in phase 

contrast microscopy – and electron microscopy is a form of phase contrast microscopy 

– one optimises the instrument to convert the phase variations in the object plane into 

amplitude variations in the image plane (see below).  Thus, although strictly speaking 

the phases in the image are lost, the amplitudes in the image which one registers 

contain the information about the phases in the object, which is exactly what we are 

interest in when studying the structure of biological macromolecules by cryo-EM.  

Thus, there is not really a phase problem in EM. 

 

But, even if it is not directly relevant in electron microscopy, why is it that we loose 

the phases of the wave functions (both in EM and in X-ray crystallography) when we 

register the wave functions in the first place? What is the fundament problem we face 

here?  The problem is associated with the time scale of the events.  Suppose on stand 

in the water at the beach and observes the ocean waves going to the shore.  The 

distance between the tops of two consecutive waves defines the wavelength to the 

waves, the height of the waves defines their amplitudes, and we can even observe the 

phase of the arriving waves.  After all, we can synchronise our actions to the phase of 

the arriving waves and jump over the wave tops assuming their amplitudes will allow 

us to do that.  Thus, we can easily measure the amplitudes of the incoming waves as 

well as their phases.  Why does that not also work for electron and photons? 

 

Suppose we expose a photographic film to light using a very short exposure time, say 

1/1000th of a second. During that exposure the light waves will have travelled ~ 

300,000,000 m/sec x 0.001 sec = 300,000 m.  Thus, the equivalent of ~ 1010 

wavelengths has passed through the film during the exposure time. The story for X-

ray photons or 300kV electrons is similar.  Although determining the phases of ocean 

waves or radio waves is quite straightforward, the detectors we use in electron 

microscopy and in X-ray crystallography are simply too slow for determining the 

phases of the incoming waves directly.  There is also not much hope of developing 

phase-sensitive detectors since there are limitations to what one can do with all known 
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materials.  The phase sensitive detectors can be built if we create a reference wave 

with which we can generate an interference pattern with the wave we are interested 

in. This is the principle of Holography, invented by the Imperial College scientist 

Dennis Gabor (Nobel prize for Physics 1971; http://www.nobel.se/). 

 

 

7. The Phase Contrast Microscope 

 
As was mentioned above (equation 5), in an ideal microscope, a pure phase object will 

lead to homogeneously grey image from which all phase information has disappeared. 

This means that when we are, say, investigating live bacteria in water, nothing is seen 

in the image. It had long since been common knowledge that one could observe such 

objects by somewhat defocusing the light microscope and we will get to that below 

(Zernike, 1942).  However, it required a stroke of genius to fundamentally understand 

the matter and to then design the phase contrast microscope exploiting this basic 

understanding. Fritz Zernike (1888-1966) invented the phase-contrast microscope in 

1930 at the University of Groningen, The Netherlands. The first phase-contrast 

microscopes were not built until 1941. He received the Nobel Prize for physics 1956 

(http://www.nobel.se/).  To avoid losing the phase information he proposed the use of 

a “phase plate” in the back focal plane of the microscope.  

 
 

 
 

Figure 11. Fritz Zernike (1888-1966) with one of first phase-contrast microscopes were 

not built until 1941. (Nobel Prize for physics, 1956 (http://www.nobel.se/). 

 

The phase plate (Fig. 12) changes the relative length of the optical path of the 

diffracted beams with respect to the zero-order beam (such that an extra phase 

difference of 90º (or 270º) is introduced between the two (Fig. 13).  The influence of 

this extra phase shift in the resulting image is dramatic.  We discussed above (Fig. 11) 

why phase objects are not visible in the conventional microscope: the phase 

fluctuations in the image (due to the presence of the phase object in the object plane) 

are “perpendicular” to the plane waves of the un-diffracted beam (Fig. 11c). 

 

http://www.nobel.se/
http://www.nobel.se/
http://www.nobel.se/
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Figure 12.  A phase object does not modulate the intensity of the incoming wave, but 

rather changes the phase of the incident waves. The brilliant trick of phase-contrast 

microscopy is to manipulate the phases of the diffracted beam, relative to the phase of 

the 0-order beam (on the optical axis in this example). 

The phase plate will change the world around: that phase information that originally 

led to fluctuations perpendicular to the background, now leads to fluctuation along the 

background light vector. At the same time, the amplitude information fluctuations that 

was along the direction of the background light (Fig. 11b) now becomes perpendicular 

to the background vector and is thus invisible in the image. 

 

 
 
Figure 13.  The Zernike phase plate in the back focal plane of the objective lens 

manipulates the phases of the diffracted beams with respect to the zero order beam such 

that they will interfere constructively in the image plane.  The phase rotation (a) can be 

either ~90º or ~270º.  The difference between the resulting images (90º versus 270º), is a 

complete reversal in contrast.  

 

In terms of the transfer of the phase information through the microscope we must 

realise that the Phase Contrast Transfer Function (PhCTF) is somewhat different from 

the transfer function we discussed earlier (Fig. 9).  The phase contrast microscope 

translates phase fluctuation in the object into amplitude modulations in the image. The 

PhCTF (short: CTF) illustrates who well the instrument does this.  Since PhCTF thus 

compares different entities is its sometimes called a “pseudo” transfer function. 
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8.  The Aberrated Microscope 
 

A simple experiment:  If we frame a piece of polyethylene foil in a slide holder, we 

do not see anything if the slide projector is focused.  However, if we turn the lens out 

of focus, thickness variations in the foil due to its manufacturing process will become 

visible.  The aberrated microscope can thus transfer phase information and that effect 

has puzzled many microscopists already more than a century ago. The modus operandi 

of the "defocused" microscope is pictured in Fig. 14. 

 

 
Simple lens: “in focus” 

 

           
“Under-focus”                                                  “Over-focus” 

 

Figure 14. A simple defocusing of a light microscope may help visualising phase 

differences in the object.  The dotted vertical lines in the lower illustrations mark 

the ideal “focus” position. The departure of the diffracted wave from the ideal 

focal plane can be interpreted as a phase plate in the back-focal plane and will 

lead to visualising certain spatial frequencies in the object. 

 

We had already seen that a point in the object plane corresponds to a plane wave in 

the back focal plane (Fig. 14a). If we shift the point to the right towards the lens – the 

under-focus situation – the wave-front becomes divergent (Fig. 14b). If we shift that 

point slightly to the left (over focus direction) the wave in the back focal plane 

becomes convergent (Fig. 14c).  In the under-focus case (Fig. 14b; Fig. 15), the wave 

in the back-focal plane will lag in phase relative to the wave on the optical axis. This 

is explained in more detail in the legend of Fig. 15. Interestingly, we could have 

obtained the same situation by inserting a physical phase plate in the back focal plane 

that would cause this phase shift.  This is why the phase structure of the plastic sheet 
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becomes visible upon defocusing or why we can see phase information in the normal 

(but defocused) light microscope.  Although we normally don't think of defocusing as 

being an image aberration, we can generally consider lens aberrations to work like a 

phase plate in the back focal plane of an optical system. The PhCF for this situation 

will schematically behave as shown in Fig. 16.  Since the PhCF in the defocused 

microscope is no longer zero everywhere, phase information becomes visible. 

 

 
 

 
 

9. The Electron Microscope as a Phase Contrast Microscope 

 
The electron microscope has an aberration that cannot easily be corrected: the 

spherical aberration. The spherical aberration coefficient “Cs” is measured in mm (see 

below).  The additional phase shifts in the back focal plane due to spherical aberration 

are schematically drawn in Fig. 17. 

 

 
 

For the higher spatial frequencies, the phase shifts grow rapidly, namely with the 

fourth power of the distance from the axis.  ,In combination with a certain amount of 

"underfocus" (Fig. 15) leads to an overall phase shift in the back focal plane that is 

Figure 16. The associated PhCTF. 

 
The information transfer in the defocused 

microscope is expressed by a Phase Contrast 

Transfer Function which is the sine of the wave 

aberration function shown in Figure 15. It has its 

positive maximum (at “A”)  where the phase 

shift reaches 90º (λ/4) and its negative maximum 

where the phase shift is 270º (3/4 λ). 

Figure 15. Defocus as a phase plate.   

 
At position A, in the back focal plane the phase is 

delayed by 90° with respect to the phase at the 

optical axis: that leads to the imaging of this 

particular spatial frequency component with ideal 

(positive) phase contrast.  A bit further up (B) the 

total phase delay is 180°, leading to no imaging of 

that spatial frequency.  At position C, the total 

phase difference is 270° and we obtain ideal, 

negative phase contrast etc. 
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exactly /4 over a large range of frequencies (Fig. 18).  Given the right combination 

of underfocus and spherical aberration we obtain an “ideal” phase-contrast microscope 

for frequency ranges from ~20Å to ~4Å ("Scherzer focus"). The PhCF for this 

situation is shown schematically in (Fig. 19); and computationally in (Fig. 20).  

 

     Figure 18  

 

      Figure 19  

 

   Figure 20 

 

Figures 18-20. The combination of under-focus and spherical aberration in the 

electron microscope makes for an almost ideal virtual phase plate. When the 

amount of under-focus optimally matches the spherical aberration of the 

objective lens, the information transfer in the EM is optimal (Fig. 20). This 

situation is called “Scherzer focus” in honour of Otto Scherzer.  
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The phase shift in the back focal plane due to spherical aberration and defocusing 

together, are given in (Scherzer 1949): 

 

X(f)  =    2  { -Cs  4· f 4   +   f  2· f 2   }    (6) 

                                     4           2.  

 

The PhCTF is then obtained by calculating the SINE of the wave aberration function: 

        PhCTF (f)  = Sin { 2     (-Cs  4· f 4  +   f  2· f 2  )}  (7) 

                                             4        2 

 

In this formula, the variables are: 

Cs: the spherical aberration coefficient (measured in mm.) 

f   : defocus  (positive for underfocus)  (-40000Å to + 40000Å) 

f      : spatial frequency  

     : wavelength of the electrons (at 80kV : 0.043 Å) 

 

 

 
 

 

Figure 21. Professor Otto Scherzer (1909–1982) used the phase-contrast 

formalism to explain the main image contrast in the electron microscope (1949).  

Taken in 1978 by MvH at the Intern. EM conference in Toronto, Canada.  

 

A final word of warning: this document is primarily about the linear 

transfer of information. Nowhere has the issue of harvesting noisy 

information has been mentioned. For a modern idea about that see 

reference #12. 
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Appendix 1:  Complex Numbers 
 

Complex numbers, rather than representing a point along a line as do “Real” numbers, 

represent a point in a two-dimensional plane.  A point in a plane can be described by 

its X- and Y-coordinates; in complex numbers nomenclature, these are called the 

“Real” and “Imaginary” part. Alternatively, the complex number can be described by 

its “Amplitude” and “Phase”. 

 

 
Figure (A1-1).  Classical complex number representations: 

 as “Phases and Amplitudes” or as “Real and Imaginary” parts.  

 

In Real and Imaginary representation: 

 

C = A + i . B   (1) 

 

In Amplitude and Phase representation:     

 

C = R . e i.    (2) 

   

In the amplitude and phase notation, one uses polar co-ordinates rather than Cartesian 

(x-y) co-ordinates.  In polar co-ordinates, one describes the position of a point in a 

plane by its distance to the origin (the radius or the amplitude), and by the angle that 

the line connecting the origin to the point makes with the positive X-axis.  

By definition: 

e i. = Cos () + i . Sin ()  (3) 

 

Thus, putting (1), (2) and (3) together we have: 

 

A = R . Cos ()   (4) 
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And: 

    B = R . Sin ()   (5) 

 

These two formulas allow one to convert a complex number written in amplitude and 

phase notation to a complex number written in real and imaginary part notation.   

 

The square of a complex number “C” (the “Intensity”) is defined as: 

 

C2 = C . C* = ( A + i.B) . (A + i.B)*  =   

 

(A + i.B) . (A - i.B) =  A2 + B2   (6) 

 

(C* is the complex conjugate of C).  Alternatively, in the amplitude and phase 

representation: 

 

C2 = C . C* =  R . e i. . R . e -i. = R2  (7) 

 

Note that in the squaring operation one uses a special version of the multiplication 

operation, the “conjugate multiplication”.  In the conjugate multiplication, one uses 

the conjugate of the second factor for the multiplication (replace “i” by “-i”).  After 

the squaring operation, the amplitude “R” can be retrieved, not the phase  of the 

complex number. 

  



 21 

 

Appendix 2: The Fourier Transform (in 1D-2D-….) 
 

The Fourier Transform, invented (discovered?) by Jean-Baptiste Fourier (1768-1830), 

plays a central role in signal and image processing.  In order to convey some sense for 

the behaviour of this important mathematical transform, here are some sketched 

examples first: 

 

  
Figure A2-1 

 

In the top row of Fig. 1, a number of functions (F(x)) is drawn, while the lower row 

shows their corresponding Fourier Transforms (F(f)).  In Fig. 1a, a constant signal 

leads to a very strong peak (a “delta function”) at frequency zero in the Fourier 

transform.  This is not too surprising since the signal F(x) contains exclusively one 

very low frequency (namely, the frequency zero). In going from Fig. 1a to 1d, the 

signal F(x) becomes narrower and higher, until the signal itself becomes a delta 

function (1d).  At the same time, we see that the corresponding Fourier transforms 

broaden: in 1d the transform has become a constant. This is the reciprocal behaviour 

of a function and its Fourier transform: short distances in real space correspond to 

large distances in Fourier space and vice-versa. (Keyword: “reciprocity theorem”) 

 

As was mentioned above, the FT decomposes a signal into sine and cosine waves. If 

the signal consists of a single cosine wave, the FT of that signal thus takes a simple 

form (we will also soon understand why these transform pairs provide nice links to 

the field of optics and X-ray crystallography): 

 

 Figure A2-2 
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The cosine waves presented in Fig. 4a,b are essentially identical, but the one in Fig 4a 

(top row) has a zero average, whereas the one in Fig. 4b is always positive. We can 

think of the latter one as being the sum of the first and a constant.  From Fig. 3a, we 

have seen that the FT of a constant is a large peak at the origin.  Thus, the FT of the 

function in Fig. 4b is simply the FT of Fig.4a, plus a large peak at the origin. The peak 

at the origin is called the zero-order or the unscattered beam in X-ray and Electron 

crystallography.   (Just to test your understanding of the reciprocity principle of the 

FT: what happens with the transforms, if we change the period of the sine-shaped 

waves in F(x)? That is to say, what happens if we change the period p to 2p or to p/2?) 

 

There are a number of definitions of the Fourier transform currently in use. The 

definition I prefer, since it avoids the presence of "2" factors in transform pairs, is:  

 

                            +                           

            F(f)     =      F(x)  exp( -2i  f · x) dx              (1)   

     - 

With its inverse: 

      + 

F(x)     =      F(f) exp( +2i  f · x) df  (2) 

   - 

We are not doing anything with these Fourier integrals here: the definitions are only 

given to facilitate their recognition in the literature.  The link to Optics was first made 

by Duffieux in 1946 in his historical work: "l'Intégrale de Fourier et ses applications 

a l'Optique" (which, I must admit, I've never read).  In Fourier Optics, the Fourier 

transforms are typically used in their two-dimensional 2D form:  

      + 

         F (f, g)  =     F(x, y)  exp{ -2i (f · x + g · y) } dx dy  (3) 

 - 

With its inverse: 

      + 

         F (x, y) =     F(f, g) exp{ +2i (f · x + g · y) } df dg   (4) 

 - 

More compact formulation: 

 

         F(f, g) =   FT+2{F (x,y)}  ; F (x,y) =   FT-2{ F(f,g) }  (5) 

  



 23 

 

 
2D Real Space 

 
2D Fourier Space 

Figure A2-3: Gaussian 2D Fourier transform pairs: In the top row of the figure, a 

number of 2D Gaussian functions (F(x)) are depicted, while the lower row shows their 

corresponding Fourier Transforms (F(f)).  In the top line, left, a very wide Gaussian 

object leads to a very strong peak (almost a “delta function”) around frequency zero in 

2D Fourier space (left in second line). In going from left to right in the top row, the 2D 

signal F(x) becomes narrower, until the signal itself almost becomes a delta function.  At 

the same time, we see that the corresponding Fourier transform broadens continuously: 

from almost a delta function to becoming a very wide Gaussian and finally a constant 

(again, not depicted). Another illustration of the reciprocal behaviour of a function in 

Real-space versus Fourier-space. (Keyword: “2D reciprocity theorem”) 

 


